Cost Total Colorings of Trees
نویسندگان
چکیده
A total coloring of a graph G is to color all vertices and edges of G so that no two adjacent or incident elements receive the same color. Let C be a set of colors, and let ω be a cost function which assigns to each color c in C a real number ω(c) as a cost of c. A total coloring f of G is called an optimal total coloring if the sum of costs ω( f (x)) of colors f (x) assigned to all vertices and edges x is as small as possible. In this paper, we give an algorithm to find an optimal total coloring of any tree T in time O(n∆3) where n is the number of vertices in T and ∆ is the maximum degree of T . key words: cost total coloring, dynamic programming, matching, total coloring, tree
منابع مشابه
Path Costs in Evolutionary Tree Reconstruction
This paper describes a dynamic programming algorithm to solve a family of problems in the reconstruction of evolutionary trees from protein sequence data, that of constructing "minimal" colorings. This dynamic programming formulation can be modified to efficiently enumerate the number of minimal colorings and thereby be used to calculate the average cost of any given edge, where the average is ...
متن کاملAsymptotic Cost of Cutting Down Random Free Trees
In this work, we calculate the limit distribution of the total cost incurred by splitting a tree selected at random from the set of all finite free trees. This total cost is considered to be an additive functional induced by a toll equal to the square of the size of tree. The main tools used are the recent results connecting the asymptotics of generating functions with the asymptotics of...
متن کاملConflict-Free Colorings - Of Graphs and Hypergraphs - Diploma-Thesis of
Conflict-free colorings are known as vertex-colorings of hypergraphs. In such a coloring each hyperedge contains a vertex whose color is not assigned to any other vertex within this edge. In this thesis the notion of conflict-free colorings is translated to edge-colorings of graphs. For graphs G and H a conflict-free coloring of G ensures an edge of unique color in each copy of H in G. The mini...
متن کاملConvex Recolorings of Strings and Trees: Definitions, Hardness Results and Algorithms
A coloring of a tree is convex if the vertices that pertain to any color induce a connected subtree; a partial coloring (which assigns colors to some of the vertices) is convex if it can be completed to a convex (total) coloring. Convex colorings of trees arise in areas such as phylogenetics, linguistics, etc., e.g., a perfect phylogenetic tree is one in which the states of each character induc...
متن کاملA Linear Algorithm for Finding Total Colorings of Partial k-Trees
A total coloring of a graph G is a coloring of all elements of G, i.e. vertices and edges, in such a way that no two adjacent or incident elements receive the same color. The total coloring problem is to find a total coloring of a given graph with the minimum number of colors. Many combinatorial problems can be efficiently solved for partial k-trees, i.e., graphs with bounded tree-width. Howeve...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- IEICE Transactions
دوره 87-D شماره
صفحات -
تاریخ انتشار 2004